

Data Resources for Hazard Modeling in Building Interiors

Dr. Donald Ponikvar

Senior Vice President Defense Group Inc.

WASHINGTON DC

2034 Eisenhower Avenue, Suite 115 Alexandria, Virginia 22314 703-535-8720 (voice) 703-535-8723 (fax)

Email: info@defensegp.com www.defensegroupinc.com

CORPORATE HEADQUARTERS

307 Annandale Road Falls Church, VA 22042 703-532-0802 (voice) 703-532-0806 (fax)

Objectives

- Different approaches for interior building modeling
 - Data requirements
 - Ease of set-up
 - Run time requirements
 - Output interpretation
- Existing Datasets from Consequence **Management ACTD**
 - Simulated convention center
 - Simulated apartment building
- Conclusions for First Responders

Interior Building Models

- HAZCB (SAIC)
 - Multizonal model, with sub-grid capability
- FAST-3D (Naval Research Lab)
 - Full CFD model
- GASFLOW (Los Alamos National Lab)
 - Full CFD model
- MIDAS-AT (PLG, Inc.)
 - Multizonal model
- CONTAIN (Sandia National Lab)
 - Multizonal model
- COMIS (Lawrence Berkeley National Lab)
 - Multizonal model
- CONTAM (NIST)
 - Multizonal model

Data Requirements

Correctly predicting indoor hazards depends critically on the following data:

- Facility characterization data (building leakage, etc.)
- HVAC characterization data
- Source characterization (release time, duration, size, agent, position)
- Meteorological data

Facility Characterization

Meteorology Measurements

- Measured data should include wind speed and direction, ambient (exterior) temperature, humidity, air pressure
- Concurrent measurements of interior room temperatures and temp gradients (time-tagged)

Consequence Management (911-Bio) ACTD

PURPOSE - Enhance world wide military capability to respond effectively to the use of chemical or biological weapons by demonstrating:

- Key weapons of mass destruction consequence management technologies in a field environment and validating research priorities
- Operational concepts of the US Army Technical Escort Unit (TEU) and US Marine Corps Chemical Biological Incident Response Force (CBIRF)
- Ability of DoD units to integrate with other Federal, State, and Local agencies
 - Preliminary Demonstration held 3-4 June 97
 - Final Demonstration held 4-8 December 97

911-Bio ACTD M&S Study Objectives

- Problem: DoD's accepted hazard prediction capability treats outdoor conditions, limited terrain ® Not applicable to 911-Bio ACTD scenarios
- Solution: Bring ensemble of models together, and evaluate them for "operational applicability"
 - Select models developed for other applications that can be easily applied to ACTD conditions
 - Reactor Containment
 - Complex Airflow
 - Fire Code development
 - Different solution methods
 - · Multizonal models
 - CFD models
- Secondary Goal: Develop "ground truth" data set for interior building modeling

Test Methodology

- Characterized the facilities
 - Leakage rates
 - HVAC flow rates
- Provided data to modelers
 - Facility and meteorology data
 - Source characterization
- Modelers prepared time-resolved aerosol concentration predictions
- Performed release, measured tracer gas and bio-simulant (spore) concentration as a function of time at different locations
- Compared blind predictions to measured data

911-Bio M&S Study Conclusions (1 of 2)

- When properly used, M&S tools are useful in a domestic Consequence Management (CM) scenario, for planning, training, operations, and analysis
- There is not one superior model type for all these applications. It is necessary to identify the question(s) that you want M&S to answer, and then choose the model type based on the question
- Important to understand thoroughly the limitations of the models that you are using

911-Bio M&S Study Conclusions (2 of 2)

- In their current state, M&S tools are not useful to first responders for Consequence Management operations while in the "hot zone"
 - · User interfaces are not friendly
 - Difficult to set up models
 - Output data is not well suited to first responders

At this time, for CM operations, M&S is better suited to on-site headquarters than in hands of first responders.

Scenario 1

- Simulated anthrax attack on a convention center
- Hangar at Dugway's Michael Army Airfield used to mock up convention center hall
- Full instrumentation suite installed
 - Environmental conditions
 - Tracer gas concentration
 - Biosimulant concentration
- Facility characterization

International Computer Expo at the "Los Angeles Convention Center"

DET

Hangar Leakage Characterization

• Hangar leakage can be expressed in terms of the flow equation:

$$Q = C_i \times \Delta P^n$$

where n = 0.635 (measured value) and C_i is a constant (measured for each leakage location in the hangar).

 Three distinct leakage locations were identified, indicated by the arrows in the sketch below (with corresponding measured flow constants):

Note that the HVAC inlet is only a leakage point when the HVAC system is turned off.

Hangar Coordinates (sensors, etc.)

Item Description	X (m)	Y (m)	Z (m)
Propylene Sampler #1 (w/ slit sampler)	-12.15	-6.65	2.00
Propylene Sampler #2 (w/ slit sampler)	0.00	-6.65	2.00
Propylene Sampler #3 (w/ slit sampler)	6.15	-0.55	1.40
Propylene Sampler #4 (w/ slit sampler)	12.40	-6.65	2.00
Propylene Sampler #9 (w/ slit sampler)	-12.15	7.15	2.00
Propylene Sampler #10 (w/ slit sampler)	-6.05	-0.50	1.40
Propylene Sampler #11 (w/ slit sampler)	0.00	7.15	2.00
Propylene Sampler #12 (w/ slit sampler)	12.40	7.15	2.00
Vertical Temperature Profile (four sensors)	12.20	-1.20	2,4,6,8
North Leg HVAC Outlet (center of bottom)	17.35	2.85	5.45
East Leg HVAC Outlet (center of bottom)	-11.60	-17.35	5.75
West Leg HVAC Outlet (center of bottom)	-12.95	9.90	5.75
Return Duct HVAC Inlet (center of opening)	-1.30	2.85	3.10
Center Curtain opening (upper west corner)	0.00	11.90	4.70
Center Curtain opening (upper east corner)	0.00	-11.90	4.70

Note: Measurements are in meters, with the origin at the geometric center of the hangar floor. Gray-shaded locations are designated for ground truth comparisons.

Release Parameters

- Anthrax Simulant (Bacillus subtillis var. niger, or BG)
 - Total of 98 grams released at 1000 hrs, 30 May 1997
 - 90% released in first 30 sec, balance in next 30 sec
 - Velocity out of disseminator device 150 fpm
 - Aerosol particle sizes ranged roughly from 1 to 10 microns
- **Propylene**

 - 150 liters per minute for 1 minute (approx 280 grams)
 Low velocity from nozzle pipe (local return airflow ~1000 fpm around the dissemination device)
- Airflow characteristics
 - All hangar doors closed and HVAC turned on 20 minutes before release
 - HVAC turned off at 1040 hrs, 30 May 1997

BG Size Distribution

- **Measured with an** aerosol particle sizer (APS); data summed over the first five minutes of the release
- **Size distribution** grouped into even sized "bins" of 0.5 mm
- 91% are 4 mm or smaller. more than 99.9% are 0.5 mm or larger

Wind Data (1 of 2)

		Speed (knots)		
Local Time	Direction	Avg	Max	
1000	46	1.6	3.6	
1005	7	1.2	4	
1010	33	0.1	1.3	
1015	199	1.3	3.2	
1020	265	1.9	5.1	
1025	304	1.3	2.7	
1030	278	2.1	3.8	
1035	277	2	5.7	
1040	272	1.5	4.9	
1045	237	0.9	3.6	
1050	268	2.8	4.6	
1055	272	2.2	5.3	
1100	228	1.8	4.9	
1105	298	2.8	6.1	
1110	336	1.6	4.8	
1115	1	1.6	3.4	
1120	309	1.6	6.7	
1125	296	3.4	9.1	
1130	263	4.4	6.7	
1135	316	3.6	8.6	
1140	297	2.6	6.3	
1145	271	5.5	8.2	
1150	219	3	7.2	
1155	282	3.5	8.8	

- NOTES -

- Date: 30 May 1997
- Wind speed measured 10 m above ground, vicinity of hangar
- Data represents 5-min averages, with max value within each 5-min window
- Wind direction is "from", w/ respect to true North (14.8° west of magnetic North)
- Air pressure was fairly constant at 870.65 ± 0.15 Mb from 1000 hrs to 1200 hrs

Wind Data (2 of 2)

		Speed (knots)		
Local Time	Direction	Avg	Max	
1200	226	3.9	8.4	
1205	333	4.3	8.6	
1210	2	4	8.4	
1215	337	6.2	11	
1220	8	2.2	12.2	
1225	264	2.1	6.7	
1230	269	2.9	8.2	
1235	36	1.1	5.1	
1240	69	2.7	5.9	
1245	146	1.8	5.1	
1250	259	5.9	9.3	
1255	280	5.3	8.2	
1300	287	2.4	5.3	
1305	72	1.5	5.9	
1310	116	0.8	5.9	
1315	243	6.1	10.8	
1320	256	3.9	7.8	
1325	331	3.7	6.3	
1330	345	2.2	5.1	
1335	338	4.6	10.5	
1340	26	6.3	9.9	
1345	32	7.8	12	
1350	360	3.4	6.1	
1355	354	3.9	7.2	
1400	28	2.9	8.8	

- NOTES -

- Date: 30 May 1997
- Wind speed measured 10 m above ground
- Data represents 5-min averages, with max value within each 5-min window
- Wind direction is "from", w/ respect to true North (14.8° west of magnetic North)
- Air pressure decreased linearly from 870.4 to 869.3 Mb between 1200 and 1400 hrs

Vertical Temperature Profile Data (inside hangar)

	Degrees C at height above floor			
Local Time	2 m	4 m	6 m	8 m
1000	24.31	24.37	24.38	25.65
1010	24.58	24.68	24.69	25.95
1020	24.81	24.91	24.93	26.19
1030	25.08	25.19	25.22	26.49
1040	25.24	25.42	25.54	26.87
1050	25.4	25.72	25.95	27.34
1100	25.61	25.97	26.32	27.66
1110	25.83	26.2	26.65	28.05
1120	26.08	26.46	26.92	28.32
1130	26.28	26.67	27.15	28.62
1140	26.41	26.87	27.44	28.88
1150	26.64	27.08	27.63	29.12
1200	26.83	27.25	27.86	29.32
1210	27.01	27.42	28.04	29.59
1220	27.25	27.68	28.28	29.78
1230	27.47	27.83	28.54	30.07
1240	27.58	28.02	28.77	30.34
1250	27.75	28.19	28.99	30.63
1300	27.94	28.37	29.25	30.87
1310	28.1	28.5	29.47	31.14
1320	28.29	28.79	29.68	31.32
1330	28.41	28.94	29.78	31.37
1340	28.55	29.13	29.86	31.48
1350	28.61	29.22	30.05	31.64
1400	28.28	29.05	30.16	31.74

- NOTES -

- Date: 30 May 1997
- Sensor location (see sketch map):
- x = 12.20 y = -1.20 z = 2,4,6, and 8
- HVAC system turned off at 1040 hrs
- Only the 8 m sensor is <u>above</u> the level of the HVAC exhaust outlets.

Scenario 2

- Simulated clandestine lab with accidental release in apartment/townhouse complex
- Dugway's German Village used to represent building
- Installed air handling system, simulated lab equipment
- Instrumentation suite installed
 - Meteorology
 - Tracer gas detectors (in every room)
- Measured building leakage rates

German Village Room Volumes

Room	Volume (m ³)
Stair 1	45.60
1.1	47.57
1.2 (includes 1.2a and b)	90.17
1.3	47.91
Stair 2	45.60
2.1	47.86
2.2	96.01
2.3	47.20
Stair 3	23.92
3.1	188.15
Total Ductwork	1.91
TOTAL	681.90

German Village Leakage Rates

Leakage characterized by the equation: $Q = C_{_i} \; \Delta P^{^{-0.61}}$

Leakage Path	C_i (m ³ /hr)
Room 1.1 to Outside	25
Room 1.1 to Staircase	74
Room 1.1 to Room 1.2	202
Door Room 1.1 to Room 1.2	43
Room 1.1 to Room 1.3	0
Room 1.1 to Room 2.1	3
Door Room 1.1 to Staircase	25
Room 1.2 to Outside	4
Room 1.2 to Staircase	28
Room 1.2 to Room 1.3	202
Room 1.2 to Room 2.2	14
Door Room 1.2 to Room 1.3	43
Room 1.3 to Outside	58
Room 1.3 to Room 2.3	8
Room 2.1 to Outside	41
Room 2.1 to Staircase	71
Door Room 2.1 to Staircase	102
Room 2.1 to Room 2.2	122

Leakage Path	C_i (m ³ /hr)
Door Room 2.1 to Room 2.2	16
Room 2.1 to Room 2.3	65
Room 2.1 to Room 3.1	14
Room 2.2 to Outside	8
Room 2.2 to Staircase	5
Room 2.2 to Room 2.3	136
Door Room 2.2 to Room 2.3	117
Room 2.2 to Room 3.1	145
Room 2.3 to Outside	25
Room 2.3 to Room 3.1	8
Room 3.1 to Outside	921
Room 3.1 to Staircase	197
Door Room 3.1 to Staircase	30
Staircase to Outside	105
Door Staircase to Outside	10
Duct System to Staircase	10
Duct System to Room 1.2	30
Duct System to Room 2.2	12

Measured HVAC Flow Rates

HVAC Register ID	Register Flow Rate (m/hr)
Supply to Room 1.1	126.8
Supply to Room 1.2a	170.8
Supply to Room 1.2b	175.9
Supply to Room 1.3	217.8
Supply to Room 2.1	244.2
Supply to Room 2.2a	161.0
Supply to Room 2.2b	199.4
Supply to Room 2.3	234.4
Total Supply	1530.3
Return	1846.1
Total Duct Leakage*	315.8

 $^{^{\}star}$ Discrepancy between supply and return flows for the HVAC system is due to leakage from the ducts.

Propylene Trials - Summary

Trial Number	Date	Start Time	End Time	Propylene Release Location	Doors	HVAC System
GV1	21-Oct-97	8:50	12:00	HVAC RETURN	ALL OPEN	ON
GV2	21-Oct-97	13:30	15:30	HVAC RETURN	STAIRWELL CLOSED	ON
GV3	21-Oct-97	16:50	19:15	HVAC RETURN	ALL CLOSED	ON
GV4	22-Oct-97	8:45	11:00	ROOM 1.3	STAIRWELL CLOSED	ON
GV5	22-Oct-97	12:05	15:20	HVAC RETURN	ALL OPEN	ON
GV6	23-Oct-97	9:00	11:20	HVAC RETURN	STAIRWELL CLOSED	ON
GV7	23-Oct-97			No Data		
GV8	24-Oct-97	9:35	11:45	HVAC RETURN	ALL CLOSED	ON
GV9	24-Oct-97	12:35	14:15	ROOM 1.3	STAIRWELL CLOSED	ON
GV10	24-Oct-97	15:10	17:10	HVAC RETURN	ALL OPEN	ON
GV11	25-Oct-97	9:05	11:05	HVAC RETURN	STAIRWELL CLOSED	ON
GV12	25-Oct-97	12:30	2:35	HVAC RETURN	ALL CLOSED	ON
GV13	25-Oct-97	15:56	20:15	ROOM 1.3	STAIRWELL CLOSED	OFF

Notes:

- 1. All times are local (Mountain Daylight).
- 2. Each release comprised 24 to 28 grams of propylene (varied by trial), released from balloons popped at the listed start times.
- 3. The door between rooms 1.2a and 1.2b was open for all trials.

Propylene Trial GV01

Conditions of Release:

- 24 grams of propylene in balloons
- Balloons popped at 0850 hrs, Mountain Daylight Time, 21 Oct 97
- HVAC system was running the whole time
- All doors in the building were open (except the 1st floor door to the outside)
- Ambient: Light and variable winds (<0.7 m/sec), ~10°C, 874 mb pressure.

Propylene Trial GV04

Conditions of Release:

- 25 grams of propylene in balloons
- Balloons popped at 0845 hrs, Mountain Daylight Time, 22 Oct 97
- HVAC system was running the whole time
- Doors to the stairwell on each floor were closed, all others open
- Ambient: Light winds (<1.3 m/sec) from SE, 870 mb pressure, temp increasing from 1.7° to 15° C

Access to the Data

- 911-Bio ACTD Final Report distributed through Defense Threat Reduction Agency, Chemical Biological Defense Directorate
 - FOUC
 - Contains M&S data plus hardware and CONOPS assessments
- Interior Building Ground Truth data being prepared as a separate package (independently releasable)
 - Requests should be directed to DTRA/CB
- M&S data archive maintained by DGI
 - Facility data in Word tables and PDF files
 - Concentration data in Excel spreadsheet format
 - Meteorological data in Word tables and Excel